25 research outputs found

    Slowing of Magnetic Reconnection Concurrent with Weakening Plasma Inflows and Increasing Collisionality in Strongly Driven Laser-Plasma Experiments

    Get PDF
    An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly driven, β ≲ 20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (V[subscript jet] ~ 20V[subscript A]) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. The absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly driven regime.United States. Dept. of Energy (Grant DE-NA0001857)University of Rochester. Laboratory for Laser Energetics (Grant 415935-G)National Laser User’s Facility (Grant DE-NA0002035)University of Rochester. Fusion Science Center (Grant 5-24431

    Measurements of Ion Stopping Around the Bragg Peak in High-Energy-Density Plasmas

    Get PDF
    For the first time, quantitative measurements of ion stopping at energies around the Bragg peak (or peak ion stopping, which occurs at an ion velocity comparable to the average thermal electron velocity), and its dependence on electron temperature (T[subcontract e]) and electron number density (n[subcontract e]) in the range of 0.5–4.0 keV and 3 × 10[superscript 22] to 3 × 10[superscript 23]  cm[superscript −3] have been conducted, respectively. It is experimentally demonstrated that the position and amplitude of the Bragg peak varies strongly with T[subscript e] with n[subscript e]. The importance of including quantum diffraction is also demonstrated in the stopping-power modeling of high-energy-density plasmas.United States. Dept. of Energy (Grant DE-FG03-03SF22691)Lawrence Livermore National Laboratory (Subcontract Grant B504974)University of Rochester. Laboratory for Laser Energetics (Subcontract Grant 412160-001G

    Ion and Electron Acoustic Bursts during Anti-Parallel Magnetic Reconnection Driven by Lasers

    Full text link
    Magnetic reconnection converts magnetic energy into thermal and kinetic energy in plasma. Among numerous candidate mechanisms, ion acoustic instabilities driven by the relative drift between ions and electrons, or equivalently electric current, have been suggested to play a critical role in dissipating magnetic energy in collisionless plasmas. However, their existence and effectiveness during reconnection have not been well understood due to ion Landau damping and difficulties in resolving the Debye length scale in the laboratory. Here we report a sudden onset of ion acoustic bursts measured by collective Thomson scattering in the exhaust of anti-parallel magnetically driven reconnection using high-power lasers. The ion acoustic bursts are followed by electron acoustic bursts with electron heating and bulk acceleration. We reproduce these observations with 1D and 2D particle-in-cell simulations in which electron outflow jet drives ion-acoustic instabilities, forming double layers. These layers induce electron two-stream instabilities that generate electron acoustic bursts and energize electrons. Our results demonstrate the importance of ion and electron acoustic dynamics during reconnection when ion Landau damping is ineffective, a condition applicable to a range of astrophysical plasmas including near-Earth space, stellar flares, and black hole accretion engines

    Measurement of Charged-Particle Stopping in Warm Dense Plasma

    Get PDF
    We measured the stopping of energetic protons in an isochorically heated solid-density Be plasma with an electron temperature of ~32  eV, corresponding to moderately coupled [(e[superscript 2]/a)/(k[subscript B]T[subscript e] + E[subscript F]) ~ 0.3] and moderately degenerate [k[subscript B]T[subscript e]/E[subscript F] ~ 2] “warm-dense matter” (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is the first test of these theories in WDM plasma.United States. Dept. of Energy (Grant DE-NA0001857)United States. Dept. of Energy (Grant DE-FC52-08NA28752)Lawrence Livermore National Laboratory (Grant B597367)University of Rochester. Laboratory for Laser Energetics (Grant 415935-G)University of Rochester. Fusion Science Center (Grant 524431)National Laser User’s Facility (Grant DE-NA0002035)National Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374

    Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions

    Get PDF
    Anomalous reduction of the fusion yields by 50% and anomalous scaling of the burn-averaged ion temperatures with the ion-species fraction has been observed for the first time in D[superscript 3]He-filled shock-driven inertial confinement fusion implosions. Two ion kinetic mechanisms are used to explain the anomalous observations: thermal decoupling of the D and [superscript 3]He populations and diffusive species separation. The observed insensitivity of ion temperature to a varying deuterium fraction is shown to be a signature of ion thermal decoupling in shock-heated plasmas. The burn-averaged deuterium fraction calculated from the experimental data demonstrates a reduction in the average core deuterium density, as predicted by simulations that use a diffusion model. Accounting for each of these effects in simulations reproduces the observed yield trends.United States. National Nuclear Security Administration (Grant DE-NA0001857)University of Rochester. Fusion Science Center (Grant 415023-G)National Laser User’s Facility (Grant DE-NA0002035)University of Rochester. Laboratory for Laser Energetics (Grant 415935-G)Lawrence Livermore National Laboratory (Grant B600100

    Using Inertial Fusion Implosions to Measure the T + 3He Fusion Cross Section at Nucleosynthesis-Relevant Energies

    Get PDF
    Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of [superscript 6]Li in low-metallicity stars. Using high-energy-density plasmas we measure the T([superscript 3]He,γ)[superscript 6]Li reaction rate, a candidate for anomalously high [superscript 6]Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. This is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics.United States. Department of Energy (DE-NA0001857)United States. Department of Energy (DE-FC52-08NA28752)United States. Department of Energy (DEFG02-88ER40387)United States. Department of Energy (DE-NA0001837)United States. Department of Energy (DE-AC52- 06NA25396)Lawrence Livermore National Laboratory (B597367)Lawrence Livermore National Laboratory (415935- G)University of Rochester. Fusion Science Center (524431)National Laser User’s Facility (DE-NA0002035)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374)Los Alamos National Laboratory. Laboratory Directed Research and Development Program (20150717PRD2

    T–T Neutron Spectrum from Inertial Confinement Implosions

    Get PDF
    A new technique that uses inertial confinement implosions for measuring low-energy nuclear reactions important to nuclear astrophysics is described. Simultaneous measurements of n–D and n–T elastic scattering at 14.1 MeV using deuterium–tritium gas-filled capsules provide a proof of principle for this technique. Measurements have been made of D(d,p)T (dd) and T(t,2n)[superscript 4]He (tt) reaction yields relative to the D(t,n)[superscript]He (dt) reaction yield for deuterium–tritium mixtures with fT/fD between 0.62 and 0.75 and for a wide range of ion temperatures to test our understanding of the implosion processes. Measurements of the shape of the neutron spectrum from the T(t,2n)[superscript 4]He reaction have been made for each of these target configurations.National Laser User’s Facility (Grant NA0000877)United States. Dept. of Energy (Grant DE-FG52-09NA29553)University of Rochester. Fusion Science Center (Rochester Subaward 415023-G, UR Account 5-24431)University of Rochester. Laboratory for Laser Energetics (Grant 412160-001G)Lawrence Livermore National Laboratory (Grants B580243 and DE-AC52-07NA27344
    corecore